PaulP38A.com Range Rovers and other Big Boy Toys ## **How EAS Works** How the Range Rover P38 Electronic Air Suspension (EAS) Works #### Introduction The notes below are based on knowledge accumulated through research, P38 enthusiast forums and good old trial and error. I do not pretend to know everything there is to know about the EAS, and if I have got something incorrect please let me know through the usual channels – PaulP38a at http://www.AULRO.com or Paul Snr Cordwell at the Range Rover P38 group on Facebook https://www.facebook.com/groups/RRP38/. ## **Basics of Operation** Important stuff to note about the EAS on a Range Rover P38: - If a door or the tailgate is open, the EAS will not adjust (unless you are moving at more than 8kph); - If your foot is on the brake pedal, the EAS will not adjust (unless you hold it for more than 3 minutes); - Pushing in the EAS Inhibit switch on the centre dash will prevent the car from changing height between Standard and Low height settings; - In automatic mode, the height of the car will drop from Standard to Low (Highway) height when speed is maintained above 80kph for more than thirty seconds. It will return to Standard height when speed drops below 60kph for more than 60 seconds; - When parked and with the engine off, the car should never raise its height. It will automatically wake up every few hours to check and adjust height, but should only ever adjust down to the lowest height sensor reading. #### Fuses and Relays: Relay RL20 and MF2 30 Amp Maxi-fuse control power to the diaphragm solenoid and compressor. F44 (F29 on post-99 models) is a 10 Amp fuse which controls the EAS ECU, the valve driver pack and the pressure switch. The delay timer under the front left seat maintains power to the EAS after the ignition is switched off, and wakes it up every few hours to adjust downwards to the lowest height sensor reading.. #### **Height Sensors** These are simple potentiometers that have a 5 Volt reference voltage modified by the dial position on the sensor, and fed back to the EAS ECU. Valid readings are between 40 and 255 bits when read by a diagnostics tool. These readings do not necessarily have a direct bearing on actual heights between each corner, so always use a measuring tape or similar to set correct heights. At the front, the height sensors are connected between the chassis and the radius arms. At the rear, the height sensors are connected between the chassis and the trailing arms. ## Air Compressor The internal thermal sensor should cut out at approximately 120 DegC, allowing the system to cool down for three minutes. If the thermal switch is still tripped (open path to ground) after three minutes, another three minute period will start and repeat until the thermal switch path to ground is closed. #### Air Dryer Potentially moist air from the compressor passes through the dryer before entering the main body of the valve block to the air lines. When exhausting from the air springs, air passes back through the dryer in the opposite direction to flush out moisture through the exhaust port on the valve block. #### Air Tank/Reservoir A 9L air tank is mounted to the chassis roughly under the right hand seats. A single 6mm air line is used to supply and exhaust air to/from the tank. The tank has a plug to drain accumulated moisture. ## Air Lines 6mm air lines go to the air springs, and the line to/from the tank, plus the short line between the compressor and valve block. A 4mm vent line exits the diaphragm solenoid. 8mm air lines are used for the two lines between the valve block and air dryer. ## **Valve Block Components Overview** #### Main components are: - A solenoid for each air spring to allow air in or out, operated by the driver unit (aka Valve Driver); - A solenoid for air ingress, and one for air egress/exhaust, operated by the driver unit; - A solenoid to operate the diaphragm which controls the direction of air flow, activated by the compressor relay; - A pressure switch controls operation of the compressor. Below approximately 115psi (790kpa) the compressor should operate, and cut out at approximately 150psi (1030kpa). - A relief valve vents excess pressure inside the valve block at approximately 180psi (1240kpa). - A silencer is screwed in to the smaller block to quieten exhausting air. - The driver unit (aka Valve Driver, the black epoxy casing at the side of the valve block) controls the current to the six solenoids (the diaphragm solenoid is operated by the compressor relay) to give a pulsed voltage, which prevents the coils within the solenoids from burning out How the Valve Block Operates WHEN FILLING THE AIR TANK Click the image below to open it in a new window When the compressor is running, the compressor relay RL20 also operates the diaphragm valve solenoid which forces air down over the top of the diaphragm and holds it closed. This directs all incoming air from the compressor through the dryer via port 7 and back in to the valve block at port 5. With the inlet valve and exhaust valve closed, no air can flow to/from the air spring solenoids, forcing all air to the tank via port 6. ## WHEN THE AIR SPRINGS ARE INFLATING (FRONT LEFT SHOWN) Generally, the compressor will be operating when one or more springs are inflating, but it does not have to be. The diaphragm valve solenoid is open to allow air in the system to hold the diaphragm closed. The exhaust valve solenoid is closed to prevent air exiting via the diaphragm valve. The inlet valve solenoid opens to permit air from the tank (port 6) or compressor to flow to whatever air spring solenoid is open. #### WHEN THE AIR SPRINGS ARE DEFLATING (REARS SHOWN) The compressor will not/should not run when the air springs are deflating. The solenoid for each deflating bag will open to allow air back in to the valve block, and the exhaust valve will open to allow air to flow back through the dryer. With the diaphragm valve solenoid off, the diaphragm is free to lift and allow air out to atmosphere via the exhaust silencer. ## **Frequently Asked Questions** ## DO MY AIR SPRINGS EQUALISE? Yes sometimes, but just the front. When you drive off from a stop (in gear, foot off the brake pedal) the compressor will stop running for a few seconds to allow the front springs to equalise. WHY DO I GET THE EXTENDED RIDE HEIGHT SYMBOL ON THE DASH? This is a design feature intended to lift the body above an obstacle which has grounded the body. In otherwise normal operation, it is usually due to a problem with a height sensor not being able to register a lowering of feedback within a 10 second period. You should be able to manually select a lower height setting, or the Extended Ride should cancel itself within ten minutes, or speed increases above 50kph. Sometimes you can reset the problem by stopping the car and switching off the engine, open a door and then close it again (causes an EAS check, even with the ignition off). Make sure all doors and the tailgate are closed, wait a minute and then start the engine. The only downside to this is that if it is a "hard fault" you may cause the car to drop to the bump stops. WHY DOES THE COMPRESSOR NOT RUN AT ALL? For the compressor to operate automatically, the following conditions must be met: - Engine speed greater than 500rpm; - Pressure switch operational (open); - Thermal switch closed (grounded); - Exhaust valve solenoid closed; - Compressor Relay operational (closed) and MF2 not blown. **Connectors and Pin-outs for EAS Components** ## C117 ECU Connector | - | | | | |--|----------------|--|--| | Position | Color | Description | | | 1. Slate/Green | | Power from Delay relay | | | 2. | Orange/Slate | Rear Left Height Sensor Source 5V | | | Orange/Blue | | Front Left Height Sensor Source 5V | | | 4. | Orange/Pink | Rear Left Height Sensor Input Voltage | | | 5. | Orange/Green | Front Left Height Sensor Input Voltage | | | 6. | | a | | | 7. | Blue/Pink | Lamp Control and Message to BeCM | | | 8. | Green | Compressor Relay Driver | | | 9. | Green/Slate | Exhaust Valve, 12V to Open Valve | | | 10. | Green/Black | Front Left Valve, 12V to Open | | | 11. | Green/White | Rear Left Valve, 12V to Open Valve | | | 12. | Slate | Engine Speed Input, from BeCM C114 | | | 13. | Slate/Blue | Pressure Switch Input, 12V when Switch Closed | | | 14. | Black/Pink | Park/Hand Brake Input, From BeCM C112, Ground to enable Access
Mode | | | 15. | Yellow/Slate | Inhibit Switch Input, Ground when pressed | | | 16. | Black/Purple | Thermal Switch Monitor, Open Circuit to Begin Cooling Cycle | | | 17. | White/Pink | Serial Communications RECEIVE | | | 18. | Black | Ground E154 | | | 19. |) ÷ | 3- | | | 20. | Orange/Red | Rear Right Height Sensor Source 5V | | | 21. | Orange/Pink | Front Right Height Sensor Source 5V | | | 22. Orange/Brown | | Rear Right Height Sensor Input Voltage | | | 23. | Orange/Yellow | Front Right Height Sensor Input Voltage | | | 24. | Black/Pink | Height Sensor Ground | | | 25. Blue/White | | Lamp Control and Message to BeCM | | | 28. Green/Orange Inlet Valve, 12V to O | | Inlet Valve, 12V to Open Valve | | | 27. | Green/Pink | Front Right Valve, 12V to Open Valve | | | 28. | Green/Yellow | Rear Right Valve, 12V to Open Valve | | | 29. | | | | | 30. | Yellow | Road Speed Input from BeCM C112, 12V square Wave | | | 31. | Green/Purple | Brake Switch Input, 12V with Brakes Applied | | | 32. | Yellow/Orange | Up Switch Input, Ground when Pressed | | | 33. | Yellow/Brown | Down Switch Input, Ground when Pressed | | | 34. | Purple/Slate | Door Input from BeCM C112, Ground with Door Open | | | 35. | White/L. Green | Serial Communications TRANSMIT | | #### C139 Valve Block to Valve Driver Connector | osition | Color | Description | |---------|-------------|--| | 14 | White | Rear Left Valve Hit and Drop Control | | 15 | Red/White | Rear Left Valve 12 Volt | | 16 | 177 | | | 17 | Red/Orange | Exhaust Valve 12 Volt | | 18 | Orange | Exhaust Valve Hit and Drop Control | | 19 | Red/Brown | Front Left Valve 12 Volt | | 20 | Red/Black | Inlet Valve 12 Volt | | 21 | Pink | Front Right Valve Hit and Drop Control | | 22 | Yellow | Rear Right Valve Hit and Drop Control | | 23 | Brown | Front Left Valve Hit and Drop Control | | 24 | Slate | Inlet Valve Hit and Drop Control | | 25 | Red/Pink | Front Right Valve 12 Volt | | 26 | Red/L Green | Rear Right Valve 12 Volt | ## C142 Diaphragm Valve Connector | Position | Color | Description | | |----------|-------|---------------------------------|--| | 1. | Green | 12V Power from Compressor Relay | | | 2. | Black | Ground to C152, Pin 11 | | ## C151 Compressor Connector | Position | Color | Description | |----------|-----------------|--| | 1. | .= | .a. | | 2. | Black/Purple | Thermal Switch Monitor, Open to Enter Cooling Period | | 3. | Black | Ground, E154 | | 4. | Purple/Lt Green | Power Supply | ## C152 Valve Block Connector from ECU | Position | Color | Description | |----------|-----------------|--| | 1. | Green/White | Rear Left Valve, 12V to Open Valve | | 2. | Green/Yellow | Rear Right Valve, 12V to Open Valve | | 3. | Green/Black | Front Left Valve, 12V to Open Valve | | 4. | Green/Pink | Front Right Valve, 12V to Open Valve | | 5. | Green/Orange | Inlet Valve, 12V to Open Valve | | 6. | Green/Slate | Exhaust Valve, 12V to Open Valve | | 7. | Slate/Green | Delay Relay to Pressure Switch 12V Power | | 8. | Purple/Lt Green | Diaphragm Valve, 12V to Open Valve | | 9. | Slate/Blue | Pressure Switch 12V Signal to ECU | | 10. | Black | Ground, E148 | | 11. | Black | Ground, E148 | | 12. | Slate/Green | 12V Power from Delay Relay to Valve Driver | | 13. | Slate/Green | 12V Power from Delay Relay to Valve Driver | ## Typical Height Sensor-C108, C146, C147, C168 | Position | Color | Description | |----------|---------------|--| | 1. | Refer to C117 | Height Sensor Source, 5V from ECU | | 2. | Refer to C117 | Height Sensor Wiper, Voltage is Height dependent | | 3. | Black/Pink | Height Sensor Ground |